Environment – Land Use and Rural Stewardship

Recovery from diffuse pollution and timescales of groundwater transport

Enhancing Water Quality

Sarah M Dunn Macaulay Land Use Research Institute

COMMISSIONED BY

PARTNER ORGANISATIONS

PROCRAMME3-

Groundwater nitrate concentrations

Lunan Catchment

PROCRAMME**3**-

Groundwater contours

From Le Feuvre and Fitzsimons, SEPA Report 2010

Lunan groundwater recharge

Difference in water balance in the upper catchment gives an estimate of groundwater recharge of ~ 25% • Technique uses known historic changes in atmospheric mixing ratios of trace gases

Enhancing Water Quality

• CFCs and SF₆ are suitable for \sim 1970 - present

Groundwater dating

- Concentrations are affected by recharge temperature (solubility) and elevation (pressure n/a)
- Presence of excess air (entrained air bubbles) needs to be accounted for.

Considerable Uncertainty

PROCRAMME3-

SF₆ and CFC-12 data for Lunan

• Numerical method of characterising transit time distribution of tracer particles in groundwater

Enhancing Water Quality

- Mobile and immobile fractions are analogous to fracture and inter-granular flow pathways
- Apply historic time-series of atmospheric CFC and SF_6 data from 01/01/1967 31/12/2008
- Use different parameter values (P*_D and T*) to assess sensitivity and responses

600 7 CFC-12 Response Function (pptv) **Atmospheric concentration** Function (pptv) Atmospheric concentration $T^{*} = 10 yrs$ 6 T^{*} = 10 yrs 500 $T^{*} = 20 yrs$ = 20 yrs $T^* = 30 \text{ yrs}$ 5 ['] = 30 yrs **T**^{*} = 100 yrs 400 T^{*} = 100 yrs 4 300 SF₆ Response 3 200 2 100 1 0 0 1/1/70 1/1/80 1/1/90 1/1/00 1/1/70 1/1/80 1/1/90 1/1/00

Date

Date

Dispersion model application

Estimated mean transit times of tracer (yrs) based on application of a dispersion model with $P_D^* = 0.5$ and fitted to the mean of 2007-2009 measurements of CFC-12 and SF₆:

Dispersion model results

Tracer	BH1	BH2	BH3	BH4	BH5	BS	LW	BB
CFC-12	> 500	100	30	12 ^a	52	35	15	10
SF6	132	36	np ^b	95	62	31	12	22

a – samples possibly contaminated with CFC-12

b – samples possibly contaminated with terrigenic SF_6

PROGRAMMES

Potential response curves

PROCRAMME3-

Surface water nitrate

PROCRAMME3-

Conceptual model structure

Daily mass balance of available N for leaching:

 $AvailN_t = AvailN_{t-1} + FertN_t - CropN_t + DepN_t + MinerN_t - DenitN_t + OrgN_t$

Nitrate model

Miner N_t and *Denit* $N_t = fn(temperature, moisture)$

Temperature rate function:

 $fn(temp) = 1.047 t^{Soil - 20}$

Soil moisture rate function:

fn (moist) = 1 for (store/fc) > 0.65fn(moist) = ((store/fc) - 0.3) / 0.65 for 0.3 < (store/fc) < 0.65fn (moist) = 0 for (store/fc) < 0.3

Fertiliser and Crop N temporally varying

PROCRAMME3-

100

scenarios

Land use and crops

PROCRAMME3-

Model calibration (1)

PROCRAMME3-

20 30 NO₃-N concentration (mg I⁻¹) **Kirkton Mill** 25 15 Stream Flow (m³s⁻¹ 20 10 15 5 10 0 5 -5 1/10/07 1/2/08 1/6/08 1/10/08 1/2/09 1/6/09 1/10/09 20 NO₃-N concentration (mg l⁻¹) **Groundwater N** 15 10 5 0 -5 1/10/07 1/2/08 1/6/08 1/10/08 1/2/09 1/6/09 1/10/09

Model captures broad spatial variability in NO₃

Model calibration (2)

- Lochs and groundwater both
 have an important influence at
 the catchment scale
- Basic land use influences can be seen at the sub-catchment scale

PROCRAMMES

Responses to land use change

- Insufficient data to establish spatial averages of groundwater transit times
- Groundwater dating indicates timescales ranging from ~2 years to > 100 years

Conclusions

- Could take between 16 and 38 years to achieve 90% of any reduction in leaching
- Groundwater processes and loch dynamics are important for catchment stream response
- Substantial management changes needed to detect short-term improvements at catchment scale.